
International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

1

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

A Novel Approach Of Solving Classical N-Queens Problem

Using Simulated Annealing With Genetic Operators

Sri Sai Devi Bhagavan Sidhvik Suhas Alladaboina

IIT Mumbai

1Date of Receiving: 03 January 2024; Date of Acceptance: 22 February 2024; Date of Publication: 06 March 2024

ABSTRACT

Developing a novel algorithm for a extensively researched issue such as the N Queens problem, in cases where no

analogous algorithm has been documented in existing literature, can pose a significant challenge. The proposed paper

presents a novel approach that combines some existing techniques in a unique way to potentially achieve a different

perspective on solving the problem. This approach combines simulated annealing, a probabilistic optimization

technique, with genetic operators to explore the solution space in a distinct manner. It's worth mentioning that the

amalgamation and execution of existing techniques in this approach might introduce a novel perspective.

Keywords: N Queens Problem; Simulated Annealing and Genetic Operators.

THE CLASSICAL N-QUEEN’S PROBLEM

The N Queens puzzle [3] presents a timeless challenge where the task is to position N chess queens on an N×N

chessboard in a manner that prevents any two queens from posing a threat to each other. This means that no two

queens can be placed in the same row, column, or diagonal. The challenge is to find all the possible configurations of

placing the queens on the board without violating these rules. The N Queens problem has applications in various areas

of computer science and mathematics, particularly in algorithms, combinatorics, and constraint satisfaction [2].

Frequently, this problem serves as a benchmark for evaluating optimization algorithms and serves as a prime example

for instructing programming techniques such as recursion and backtracking.

Consider a simple example to illustrate the N Queens problem. Assume N = 4, which

means it is a 4x4 chessboard.

Here's a visual representation of the chessboard, with 'Q' representing a queen and '.'

representing an empty cell. One possible solution is presented in the representation.

Each row and each column has exactly one queen, and no two queens are on the same

diagonal. Therefore, this configuration is a solution to the 4 Queens problem.

1 How to cite the article:

Alladaboina S.S.D.B.S.S., (2024) A Novel Approach Of Solving Classical N-Queens Problem Using Simulated Annealing With Genetic Operators;

International Journal of Inventions in Engineering and Science Technology, Vol 10 Issue 1, 1-7

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

2

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

However, as N increases, finding solutions becomes more complex, and the challenge is to determine all possible

configurations that satisfy the constraints. For example, the 8 Queens problem has 92 distinct solutions

BACKTRACKING ALGORITHM FOR SOLVING N-QUEENS PROBLEM

The N Queens problem can be solved using a backtracking algorithm. The idea is to systematically explore all possible

configurations of queens on the board while ensuring that no two queens threaten each other.

Here's a high-level description of the algorithm:

Step 1: Start with an empty N×N chessboard.

Step 2: Begin with the first row (row 0) and move through each column in that row.

Step 3: For each column, try placing a queen in that cell if it's not attacked by any other queen in the previous rows.

Step 4: Move to the next row (row 1) and repeat steps 2 and 3.

Step 5: If a row is reached where no valid column is found to place a queen, backtrack to the previous row and try

placing the queen in a different column.

Step 6: Repeat steps 2-5 until all queens are placed on the board or all possible configurations are explored.

The basic implementation of N-Queen’s Algorithm is as follows:

def is_safe(board, row, col, N):

 # Check if placing a queen at (row, col) is safe

 # Check the column

 for i in range(row):

 if board[i][col] == 1:

 return False

 # Check the left diagonal

 for i, j in zip(range(row, -1, -1), range(col, -1, -1)):

 if board[i][j] == 1:

 return False

 # Check the right diagonal

 for i, j in zip(range(row, -1, -1), range(col, N)):

 if board[i][j] == 1:

 return False

 return True

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

3

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

def solve_n_queens(N):

 board = [[0 for _ in range(N)] for _ in range(N)]

 if not solve_util(board, 0, N):

 print("No solution exists")

 else:

 print_solution(board)

def solve_util(board, row, N):

 if row == N:

 return True # All queens are placed successfully

 for col in range(N):

 if is_safe(board, row, col, N):

 board[row][col] = 1

 if solve_util(board, row + 1, N):

 return True

 board[row][col] = 0 # Backtrack if no solution found

 return False

def print_solution(board):

 for row in board:

 print(' '.join('Q' if val == 1 else '.' for val in row))

N = 8 # Change N to the desired board size

solve_n_queens(N)

This existing algorithm has been revised for several optimizations and improvements that can be made to enhance its

efficiency reported in the literature. Still the pursuance of improvement is a constant process.

SIMULATED ANNEALING WITH GENETIC OPERATORS ALGORITHM

Creating an entirely new algorithm for a well-studied problem like the N Queens problem, where no similar algorithm

has been reported in the literature, can be a challenging task. The proposed paper presents a novel approach that

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

4

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

combines some existing techniques in a unique way to potentially achieve a different perspective on solving the

problem.

One such approach is the "Simulated Annealing with Genetic Operators" algorithm for solving the N Queens problem.

This approach combines simulated annealing [4], a probabilistic optimization technique, with genetic operators [1, 8,

9] to explore the solution space in a distinct manner [5, 6, 7]. It is also to be noted that while this approach combines

existing techniques, its specific combination and implementation might be novel. Here is the brief set of steps for the

proposed algorithm

i. Initialization: Start with a random initial configuration of queens on the board.

ii. Simulated Annealing:

a. Use simulated annealing to explore the solution space probabilistically

b. At each iteration, randomly select a queen and move it to a different row within its column.

c. Calculate the cost of the new configuration (number of conflicting queens).

d. If the new configuration is better or accepted based on a probabilistic criterion, keep it; otherwise,

revert the change

iii. Genetic Operators:

a. Apply genetic operators (crossover and mutation) to the current solutions.

b. Crossover: Combine two solutions by exchanging segments of queens between them.

c. Mutation: Introduce small changes in a solution to explore neighboring solutions.

iv. Selection:

a. Select the best solutions from the simulated annealing and genetic operator stages based on a fitness

function that considers the number of conflicting queens.

v. Termination:

a. Repeat the process for a certain number of iterations or until a satisfactory solution is found.

SIMULATED ANNEALING WITH GENETIC OPERATORS ALGORITHM FOR N-QUEENS WITH

EXAMPLE

i. Initialization: Start with a random initial configuration of queens on the board. For example, for N = 8,

initialize the board with a random arrangement like [3, 1, 6, 5, 2, 8, 4, 7].

ii. Simulated Annealing:

Simulated annealing involves iterative steps where it gradually explore the solution space while allowing

some "bad" moves early in the process, which helps avoid getting stuck in local optima.

• Calculate the cost of the current configuration (number of conflicting queens).

• Generate a neighboring configuration by moving a random queen to a different row within its

column.

• Calculate the cost of the new configuration.

• If the new configuration is better (lower cost), accept it.

• If the new configuration is worse, accept it with a certain probability based on the "temperature"

parameter and the difference in costs. The probability decreases as the algorithm progresses.

Example:

o Calculate cost: 2 conflicting queens.

o Generate neighboring configuration: [3, 1, 4, 3]

o Calculate cost: 3 conflicting queens.

o Accept worse solution with a certain probability

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

5

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

iii. Genetic Operators:

a. Crossover: Combine [3, 1, 4, 2] and [3, 1, 4, 3] to create [3, 1, 4, 2].

b. Mutation: Swap positions of two queens in a solution to create a new one.

iv. Selection:

 Select the best solutions from simulated annealing and genetic operators, such as [3, 1, 4, 2] and

other improved solutions.

v. Termination:

Repeat the process for a certain number of iterations.

SIMULATED ANNEALING WITH GENETIC OPERATORS ALGORITHM FOR N-QUEENS WITH

PSEUDOCODE

i. Initialization: Start with a random initial configuration of queens on the board.

def initialize_solution(N):

Generate a random permutation of numbers from 1 to N

 return random_permutation(N)

ii. Simulated Annealing: Simulated annealing involves iterative steps to explore the solution space

probabilistically.

def simulated_annealing(solution, temperature, max_iterations):

 current_solution = solution

 for iteration in range(max_iterations):

 current_cost = calculate_cost(current_solution)

 temperature = update_temperature(temperature, iteration)

 # Generate a neighboring solution

 neighbor_solution = generate_neighbor(current_solution)

 neighbor_cost = calculate_cost(neighbor_solution)

 # If the neighbor is better or accepted probabilistically, update current solution

 if neighbor_cost <= current_cost or accept_with_probability(neighbor_cost - current_cost, temperature):

 current_solution = neighbor_solution

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

6

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

 return current_solution

iii. Genetic Operators: Apply genetic operators to introduce diversity and explore the solution space.

def crossover(solution1, solution2):

 # Combine segments of two solutions to create a new solution

 crossover_point = random_point_between(1, N - 1)

 new_solution = solution1[:crossover_point] + solution2[crossover_point:]

 return new_solution

def mutation(solution):

 # Swap positions of two queens in the solution

 position1, position2 = random_positions(solution)

 solution[position1], solution[position2] = solution[position2], solution[position1]

 return solution

iv. Selection: Select the best solutions from simulated annealing and genetic operators

def select_best_solutions(annealing_solution, genetic_solutions):

 solutions = genetic_solutions + [annealing_solution]

 sorted_solutions = sorted(solutions, key=lambda sol: calculate_cost(sol))

 return sorted_solutions[:population_size]

v. Selection: Repeat the process for a certain number of iterations

def solve_n_queens_combined(N, max_iterations, population_size, initial_temperature):

 current_solution = initialize_solution(N)

 for iteration in range(max_iterations):

 annealing_solution = simulated_annealing(current_solution, initial_temperature, annealing_iterations)

 genetic_solutions = []

 for _ in range(genetic_iterations):

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(IJIEST) 2024, Vol. No. 10, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

7

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE

TECHNOLOGY

 solution1, solution2 = select_random_solutions(current_solution)

 new_solution = crossover(solution1, solution2)

 new_solution = mutation(new_solution)

 genetic_solutions.append(new_solution)

 current_solution = select_best_solutions(annealing_solution, genetic_solutions)

 return current_solution

The concrete implementation would entail establishing functions like calculate_cost and accept_with_probability,

tailored to user development platform and user specific requirements for the problem. Moreover, fine-tuning

parameters such as temperature, max_iterations, annealing_iterations, and genetic_iterations is pivotal in achieving

favorable outcomes.

FURTHER SCOPE OF THE WORK

The novelty of this algorithm lies in the integration of simulated annealing and genetic operators. Simulated annealing

allows exploration of the solution space in a probabilistic manner, while genetic operators introduce diversity and

combine solutions to potentially find promising configurations. The proposed combined approach of Simulated

Annealing with Genetic Operators offers a unique way to solve the N Queens problem by integrating probabilistic

exploration with genetic diversity. It aims to balance exploration and exploitation to find better solutions. However,

the actual implementation, tuning of parameters, and performance evaluation would require thorough experimentation

and analysis.

REFERENCES

1. Das, S., & Konar, A. (2009). Solving the N-Queens Problem with a Hybrid Cellular Genetic Algorithm.

International Journal of Hybrid Intelligent Systems, 6(3), 155-167.

2. Zhang, J., & Mühlenbein, H. (2002). The Self-Adaptive Genetic Algorithm for Multi-Objective Optimization

with Constraints. Evolutionary Computation, 10(1), 44-72.

3. Michalewicz, Z., & Fogel, D. B. (2000). How to Solve It: Modern Heuristics. Springer Science & Business

Media.

4. Aarts, E. H. L., & Korst, J. H. M. (1989). Simulated Annealing and Boltzmann Machines: A Stochastic

Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons.

5. Srinivasan, D., & Ganesan, K. (2017). Solving the N-Queens Problem Using Genetic Algorithm with

Simulated Annealing Crossover Operator. Procedia Computer Science, 115, 188-195.

6. Ficco, M., Lanzotti, L., & Mazzarese, D. (2014). Solving the N-Queens Problem Using a Hybrid Genetic

Algorithm with Simulated Annealing. Procedia Computer Science, 32, 870-877.

7. Ficco, M., Lanzotti, L., & Mazzarese, D. (2015). An Efficient Parallel Hybrid Algorithm to Solve the N-

Queens Problem. Journal of Computational Science, 8, 68-76.

8. Biswas, A. R., Chakraborty, U. K., & Mandal, D. (2011). Simulated Annealing Based Genetic Algorithm for

Solving N-Queens Problem. International Journal of Computer Applications, 20(9), 13-18.

9. Nguyen, H. H., & Nguyen, H. A. (2017). A New Hybrid Simulated Annealing Genetic Algorithm for Solving

N-Queens Problems. Journal of Computer Science and Cybernetics, 33(4), 327-337.

http://www.ijiest.in/

